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Abstract

The classical Sankoff algorithm for the simultaneous folding and alignment of homologous RNA sequences is highly
influential, but it suffers from two major limitations in efficiency and modeling power. First, it takes O(n6) for two
sequences where n is the average sequence length. Most implementations and variations reduce the runtime to O(n3)
by restricting the alignment search space, but this is still too slow for long sequences such as full-length viral genomes.
On the other hand, the Sankoff algorithm and all its existing implementations use a rather simplistic alignment model,
which can result in poor alignment accuracy. To address these problems, we propose LinearSankoff, which seamlessly
integrates the original Sankoff algorithm with a powerful Hidden Markov Model-based alignment module. This extension
substantially improves alignment quality, which in turn benefits secondary structure prediction quality, confirmed over
a diverse set of RNA families. LinearSankoff also applies beam search heuristics and the A⋆ algorithm to achieve that
runtime scales linearly with sequence length. LinearSankoff is the first linear-time algorithm for simultaneous folding and
alignment, and the first such algorithm to scale to coronavirus genomes (n ≃ 30, 000nt). It only takes 10 minutes for a pair
of SARS-CoV-2 and SARS-related genomes, and outperforms previous work at identifying crucial conserved structures
between the two genomes.
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Introduction

Many RNAs are involved in multiple cellular processes [1, 2],

whose functions highly rely on their conserved structures.

Therefore, there is a need to develop fast and accurate

algorithms for conserved structure prediction over RNA

homologs.

To automate comparative analysis, Sankoff [3] pioneered

an algorithm to simultaneously fold and align homologous

sequences. However, it takes O(n6) time for just two

sequences with the average sequence length n, and O(n3k)

time for k sequences in general. To make it feasible, several

implementations of the Sankoff algorithm [4, 5, 6, 7, 8, 9, 10,

11]. reduce the runtime to O(n3m3) via banding the alignment

region with a fixed width (m), which shrinks the alignment

search space from O(n2) to O(nm). Some of these tools,

including PARTS [11], LocARNA [9] and SCARNA [12], also

simplified the energy model using base-pairing probabilities.

However, this cubic runtime is still intractable for long

sequences such as full-length viral genomes.

Besides the intractability, there is yet another important

limitation in the Sankoff framework and its implementations,

where the alignment module is overly simplistic which scores

matches, mismatches, and gaps independently of each other

(e.g., using the classical Needleman–Wunsch [13] alignment).

For example, the original Sankoff algorithm and Dynalign [5]

only include gap penalty, while LocARNA and FoldAlign also

include mismatch matrices. By contrast, the Hidden Markov

Model (HMM) has been well studied and applied to align RNA

sequences [14, 15] which score each alignment step (match,

mismatch, or gap) depending on the previous step, therefore

extending a gap is treated differently from starting a gap.

To address these problems, we propose LinearSankoff, which

extends the original Sankoff algorithm (with full energy model)

by incorporating a more powerful, HMM-based alignment

model. This integration between Sankoff and HMM requires

non-trivial generalizations to the original Sankoff-style dynamic

programming algorithm. As a result, all existing variants

of Sankoff are simplified versions of LinearSankoff in terms

of either or both folding and alignment models. To make
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2 Author Name et al.

language RNA

single-sentence parsing single-sequence folding

CKY O(n3) Nussinov/Zuker O(n3)

context-free grammar (CFG) CFG

synchronous parsing homologous folding

(joint parsing & alignment) (joint folding & alignment)

Wu [18] O(n6) Sankoff [3] O(n6)

synchronous CFG synchronous CFG

Table 1. Correspondence between natural language parsing and

RNA folding. While the correspondence between single-sentence

parsing and singe-sequence folding is well-known, our work is the

first to establish the connection between synchronous parsing and

homologous folding. This leads to our borrowing of synchronous

context-free grammar from the former to the latter.

it efficient, we generalize the beam pruning technique of

LinearFold [16] from single-sequence folding to homologous

folding to make the LinearSankoff runtime scale linearly with

the sum of sequence lengths. More interestingly, LinearSankoff

also applies the A∗ algorithm with admissible heuristics [17]

together with beam pruning to further speed up the search.

We make the following contributions:

• We provide the first rigorous formulation of simultaneous

folding and alignment using synchronous context free

grammars borrowed from computational linguistics.

• We integrate Sankoff with an HMM-based alignment model,

which not only improves alignment quality but also in turn

benefits folding quality, and generalize the Sankoff-style

dynamic programming to keep track of HMM states.

• We extend the beam search heuristic from single-sequence

folding to joint folding to achieve linear runtime, and further

apply the A* algorithm to speed up the search.

• Overall, LinearSankoff achieves higher secondary structure

prediction and alignment accuracies than three baseline

models (LinearFold, Dynalign and LinearTurboFold).

Formulation and Modeling

Synchronous Context Free Grammar Formulation
While there have been many variants of the Sankoff algorithm

in the literature [3, 4, 6, 7, 8, 9], there has not been a

formal definition of joint folding and alignment. Therefore

there is a need to develop such a formulation to provide

mathematical rigor to this important area. Luckily, in the

sister field of computational linguistics, there is a very similar

problem “synchronous parsing”, which jointly parses and aligns

a sentence pair from two languages such as English and

Chinese [18]; it basically extends single-sentence parsing to two

sentences, just like homologous folding extends single-sequence

folding to two sequences. Synchronous parsing is rigorously

formulated by synchronous context-free grammars [19, 20, 21],

which extend the well-known context-free grammars from one

language to two languages. So we naturally borrow this

concept to formulate homologous folding. See Table 1 for the

correspondence between language parsing and RNA folding.

Below we start with a quick review of context-free grammars

for RNA folding.

For one RNA sequence x = x1x2 . . . xn with each xi ∈
{a, u, c, g}, the minimum free energy change (MFE) [22]

structure ŝ is the best-scoring structure among all possible

structures S(x):

ŝ = argmin
s∈S(x)

∆G
◦
(x, s) (1)

where ∆G◦(x, s) is the free energy of the structure s for the

sequence x. The classical solution for finding the pseudoknot-

free MFE structure is the O(n3)-time dynamic programming

algorithm [23, 24], whose search space is usually formulated

by a context free grammar (CFG). Formally, a CFG is 4-tuple

G = ⟨V,Σ, R, S⟩, where V is the set of nonterminals, Σ is the

set of terminals (Σ = {a, u, c, g}), R is the set of production

rules, and S ∈ V is the start symbol. Each rule r ∈ R has the

form A → α, where A ∈ V is rewritten into α ∈ (V ∪ Σ)∗

where ∗ denotes zero or more repetitions.

As an example, Fig. 1A shows a CFG corresponding to

the Nussinov algorithm [23]. These nonterminals represent

structural components: S for an arbitrary span, P for a span

with two ends paired, and N for an unpaired nucleotide. As a

shorthand notation, we use a to represent a nucleotide, and aa′

to represent a base pair. An RNA sequence x can be derived

from the grammar G by applying a series of production rules

(S
∗⇒G x). Each derivation also implies a RNA secondary

structure. Fig. 1B shows a derivation of G for sequence aacaag

along with the secondary structure “..(..)” in the dot-bracket

format (in gray shades, where “.” represents an unpaired

position, and “(” and “)” indicate paired positions).

Now we extend this framework to handle two sequence

folding, by extending CFG to synchronous CFG (SCFG) [21].

An SCFG G′ is still a 4-tuple ⟨V,Σ′, R′, S⟩, where V and S

remain unchanged, and the new terminal set Σ′ = {a, u, g, c, –}
includes a gap symbol (–) for alignment. Each synchronous

production rule in R′ (see Fig. 1C) now has two parts on the

right hand side to capture two sequences:

A → α, β

where A ∈ V and α, β ∈ (V ∪ Σ)∗. For example, S → S P

is extended to S → S P, S P . Note that there is a one-to-

one correspondence between the nonterminals in α and the

nonterminals in β.

Although the grammar G′ requires each nonterminal

(structural component) in one structure to correspond to

another nonterminal in the other structure, it allows some

variation on the structures of two sequences to some extent

by inserting base pairs and unpaired nucleotides. Specifically,

the rule

P → a S a
′
, b S b

′

indicates that the based pairs (a, a′) and (b, b′) are aligned (a

with b and a′ with b′). But the rule

P → a P a
′
, – P –

represents that one base pair (a, a′) is inserted in the first

sequence and gaps (–) are added to the second sequence for

alignment. Similarly,

P → – P –, b P b
′

indicates that one base pair (b, b′) is inserted in the second

sequence. In addition, the productions derived from N provide

flexibility on the length of the corresponding unpaired regions
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Fig. 1. (A) Context Free Grammar (CFG) formulation for parsing one sequence. (B) An example illustrates that CFG generates RNA sequence aacaag

via one possible derivation. The corresponding structure imposed by the derivation is annotated below the tree with gray background. (C) Synchronous

Context Free Grammar (SCFG) formulation for simultaneously folding and aligning two sequences. (D) And example represents that SCFG yields an

aligned sequence pair (–augaca, aa–cag–) via one possible derivation. The original sequence pair (augaca, aacag) can be obtained by removing gaps

directly. The secondary structures are shown with gray background. Not that we do not consider sharpturn constraint on hairpins to simplify examples

(B and D).

(N) by inserting/deleting a nucleotide in one sequence. For

example,

N → a, b

aligns two unpaired (“.”) nucleotides a and b from two

sequences, while

N → a, –

inserts one unpaired nucleotide a in the first sequence.

Therefore, the SCFG G′ folds two sequences with generally

similar structures, but does not require them to be exactly

the same. It allows freedom in the number of base pairs in

corresponding helices, as well as the length of corresponding

unpaired regions.

More formally, a derivation of SCFG, notated S
∗⇒G′ ⟨x̄, ȳ⟩,

generates a pair of aligned sequences, along with one secondary

structure for each sequence. Fig. 1D demonstrates one such

derivation that generates the aligned sequence pair:

-.((.))

-AUGACA

AA-CAG-

..-(.)-

where both the sequences and structures are aligned by

inserting gaps (–). The original sequences and structures can

be obtained by removing gaps.

Integrating HMM-based Alignment Model
For a sequence pair ⟨x,y⟩ = ⟨x1x2 . . . xn1

, y1y2 . . . yn2
⟩

with sequence length n1 and n2, respectively, we denote a

possible alignment a of two equal-length sequences with gaps,

⟨x′
1x

′
2 . . . x′

m, y′
1y

′
2 . . . y′

m⟩ with the same sequence length m

(m ≥ max(n1, n2)) by inserting gaps in two sequences, thus

x′
i, y

′
j ∈ {a, u, c, g, –}. Naturally, with the same sequence

length, the alignment can be treated as a sequence of pairs

⟨x′
1, y

′
1⟩, ⟨x

′
2, y

′
2⟩, . . . , ⟨x

′
m, y′

m⟩. We use a Hidden Markov

Model to model the pairwise alignment, which consists of three

hidden states: ↗, → and ↑ representing alignment of two

nucleotides, inserting one nucleotide in the first sequence, and

inserting one nucleotide in the second sequence, respectively.

Correspondingly, the emission/observation is ⟨x′
i, y

′
j⟩, ⟨x′

i, –⟩
and ⟨–, y′

j⟩, respectively, where x′
i and y′

j are nucleotides rather

than gaps. The Viterbi alignment path is the most likely

sequence of hidden states to generate two sequences (ignoring

gaps) among all possible alignment paths A(x,y):

â = argmin
a∈A(x,y)

p(a,x,y)

= argmin
a∈A(x,y)

Π
m
i=1pt(hi | hi−1)pt(⟨x′

i, y
′
i⟩ | hi)

(2)

where hi ∈ {↗,→, ↑} is the hidden state, starting from h0 =↗,

and pt(hi | hi−1) and pe(⟨x′
i, y

′
i) | hi⟩ are the transition and

the emission probabilities, respectively.

To formalize the integrated Sankoff+HMM framework, we

need to explicitly generate structures and the alignment state

sequence, so we further extend the 2-component SCFG G′ to

a 5-component SCFG G′′ = ⟨V,Σ′′, R′′, S⟩.1 The terminal set

is extended to {a, u, g, c, ., (, ),↗,→, ↑}, where “.”, “(” and

“)” represent structures, and ↗, → and ↑ represent alignment

states (note that gap – is no longer needed). The production

rules are further extended to have five parts on the right side:

A → α, β, α
′
, β

′
, θ

where A ∈ V , α, β ∈ (V ∪{a, u, g, c})∗, α′, β′ ∈ (V ∪{., (, )})∗,
and θ ∈ (V ∪{↗,→, ↑})∗. For example, we extend the “aligned

pair” rule P → a P a′, b P b′ to

P → a P a
′
, b P b

′
, ( P ), ( P ), ↗ P ↗

1 Such use of SCFG to explicitly model structures is also found

in natural language, e.g., between syntax and semantics [25].



4 Author Name et al.

A A G A A C
1 2 3 4 5 6

6 C

5 A

4 G

3 A

2 A

1 A

A C

P(i1, j1, i2, j2, hs, he)

̂P(i1, j1)

̂P(i2, j2)

A(1, i1, 1, i2, − , hs)

A( j1, n1, j2, n2, he, − )
D

1 n1
1

n2

6 C

5 A

4 G

3 A

2 A

1 A
A A G A A C
1 2 3 4 5 6

S(1,2,1,3, ↗ , ↑ )

P(3,6,4,6, ↗ , ↗ )

S(1, 6, 1, 6) S(1, 6, 1, 6, ↗ , ↗ )

S(1
,2,1

,3)
P(3,6,4,6)

B

E

F

−λ log pt( ↗ ∣ ↑ )
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Fig. 2. (A–B) Deductive system of Nussinov model with a simple alignment model for simultaneously folding and alignment of two sequences.

Concatenate two adjacent states S(1, 2, 1, 3) and P (3, 6, 4, 6) (A) to S(1, 6, 1, 6) (B). (C–D) Deductive system of Nussinov model with a HMM-

based alignment model for simultaneously folding and alignment of two sequences. Two more dimensions are added in the states to indicates alignment

hidden state of start and end positions. Concatenate two adjacent state S(1, 2, 1, 3,↗, ↑) and P (3, 6, 4, 6,↗,↗) (C) to S(1, 6, 1, 6,↗,↗) (D). The

solid yellow arrows show alignment hidden states of start and end positions. (E) LinearSankoff’s computation along the diagonal (from bottom left to

top right) makes it possible to further apply the beam pruning heuristic [26]. (F) LinearSankoff applies the A⋆ algorithm during beam pruning to speed

up searching. The admissible heuristic values includes P̂ (i1, j1), P̂ (i2, j2), A(1, i1, 1, i2,−, hs) and A(j1, n1, j2, n2, he,−). P̂ (i1, j1) is the minimum

free energy change of folding regions x1 . . . xi1−1 and xj1+1 . . . xn1
of sequence x conditioned on (xi1 , xj1

) forming a base pair. This score is obtained

by folding x separately from pre-processing. A similar definition applies to P̂ (i2, j2). A(1, i1, 1, i2,−, hs) is the Viterbi alignment path of x1 . . . xi1

and y1 . . . yi2 with constrained alignment state hs imposed on (xi1 , yi2 ). This probability can be computed in pre-processing. A similar idea applies to

A(j1, n1, j2, n2, he,−).

and the “pair-gap” rule P → a P a′, – P – to

P → a P a
′
, P, ( P ), P, → P →

where we remove the gaps in the sequences and structures. The

“aligned unpaired” rule N → a, b becomes

N → a, b, ., ., ↗

and the “unpaired-gap” rule N → –, b becomes

N → ϵ, b, ϵ, ., ↑

where ϵ denotes empty string.

Now a derivation in G′′ generates a 5-tuple:

S
∗⇒G′′ ⟨x,y, sx, sy, a⟩

where x and y are the two input sequences (without gaps), sx

and sy are their corresponding secondary structures, and a is

the sequence of alignment hidden states.

Given two RNA homologous sequences x and y, and

a synchronous context free grammar G′′, the goal of

simultaneously folding and alignment of RNA sequences is to

find the most likely derivation tree, i.e., secondary structures

sx and sy, to generate an alignment a of x and y with the

minimum weighted sum of folding and alignment cost:

min
S

∗⇒G′′ ⟨x,y,sx,sy,a⟩

[
∆G

◦
(x, sx) + ∆G

◦
(y, sy) − λ log p(a,x,y)

]
(3)

There is a trade-off between free energy changes

(∆G◦(x, s1)+∆G◦(y, s2)) and the alignment cost (log p(a,x1,x2)),

which is balanced by the hyperparameter λ. In the complete

model, ∆G◦(x, s1) and ∆G◦(y, s2) are calculated using loop-

based Turner free-energy model [27, 28], and p(a,x1,x2) is

estimated based on the trained HMM parameters [5].

Efficient Algorithms and Implementation

Dynamic Programming
Using Nussinov algorithm as an example, we illustrate the

deductive system of LinearSankoff in Fig. 2A–D.

With a simple alignment model, e.g., Needleman–Wunsch [13],

whose alignment states are independent with neighbors,
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states S(i1, j1, i2, j2) and P (i1, j1, i2, j2) is the minimum

cost of simultaneously folding and alignment of two spans

xi1xi1+1 . . . xj1
and yi2yi2+1 . . . yj2

from two sequences,

respectively. P (i1, j1, i2, j2) requires at least one sequence

forms a base pair at the two ends of span, either (xi1 , xj1
)

or (yi2 , yj2
) forms a base pair, or both. As shown in Fig. 2A–

B, concatenating two adjacent states just sums the cost of two

states directly.

The HMM-based alignment model is more complicated

due to the alignment state is the current alignment state

is dependent on the previous state. Therefore, the states

S(i1, j1, i2, j2, hs, he) and P (i1, j1, i2, j2, hs, he) are extended

with two more dimensions hs and he to indicate the alignment

state of start position (xi1 , yi2) and end position (xj1
, yj2

).

Fig. 2C-D use solid yellow arrows to represent alignment

states hs and he of each state. The dotted yellow arrows

are possible alignments insides each state. When two states

are concatenated, e.g., S(1, 2, 1, 3,↗, ↑) and P (3, 6, 4, 6,↗
,↗), the free energy change of secondary structure can be

added. However, the final alignment cost is the product of

two probabilities of alignment path and a transition probability

from ↑ to ↗. To get a larger S by concatenating two small

states S and P , the state S(1, 6, 1, 6,↗,↗) only keeps hs (↗)

from S(1, 2, 1, 3,↗,→) and he (↗) from P (3, 6, 4, 6,↗, ↑) and

ignores the intermediate alignment states (Fig. 2D).

Linearization
Inspired by LinearFold [16], the linear-time algorithm for

single RNA sequence folding, we generalize the beam search

heuristic from single-sequence folding to simultaneously folding

two sequences to achieve linear runtime against the sum of

sequence lengths. LinearSankoff parses two RNA sequences

along diagonal (from bottom left to top right) (see Fig. 2E).

Although, the current version of algorithm still runs in O(n6)

time for two sequences, the diagonal direction allows us to

further employ beam pruning heuristic [26, 16, 29], which

reduces to linear runtime. More sepcifically, at each step s

(s = 1...n1 + n2), for all candidates P (i1, j1, i2, j2, hs, he)

(j1 + j2 = s), we only keep the b top-scoring states and prune

less promising ones because they are less likely to be part of

the optimal final results. This results in an approximate search

algorithm in O(nb2) time.

A∗ Algorithm
LinearSankoff applies the A∗ algorithm to further accelerate

searching during beam search. The heuristic values are from

single sequence folding and sequence alignment. Formally,

during beam search, for each step s (from 1 to n1 + n2),

and each state candidate P (i1, j1, i2, j2, hs, he) with j1 +

j2 = s, LinearSankoff builds a “global” cost by adding

an approximately estimated distance to the destination. For

folding, LinearSankoff gets P̂ (i1, j1), which represents the

minimum free energy change of folding regions x1 . . . xi1−1

and xj1+1 . . . xn1
for sequence x from single sequence folding

in pre-processing. Similarly, LinearSankoff obtains P̂ (i2, j2) as

the minimum free energy change of folding regions y1 . . . yi2−1

and yj2+1 . . . yn2
for sequence y. For alignment, LinearSankoff

looks up the probability of the Viterbi alignment of two

prefix sequences x1 . . . xi1 and y1 . . . yi2 as A(1, i1, 1, i2,−, hs),

which constrains the alignment state of (xi1 , yi2) to be

hs. LinearSankoff also pre-computes the probability of the

Viterbi alignment of any two postfix sequences xj1
. . . xn1

and

Fig. 3. Grid search for the hyperparameter λ. Structure prediction

accuracy (F1 score) against alignment accuracy (F1 score) with λ values

from 0 to ∞. LF/LA is the point that shows the structure prediction

accuracy for single-sequence LinearFold calculations and alignment

accuracy for LinearAlignment alignments that are not structurally

informed.

yj2
. . . yn2

as A(j1, n1, j2, n2, he,−) from pre-processing, which

limits the alignment state of (xj1
, yj2

) to be he.

LinearSankoff sums up the free energy change of three

segments (P (i1, j1, i2, j2, hs, he), P̂ (i1, j1) and P̂ (i2, j2))

as a “global” folding score of two whole sequences,

and assembles probabilities of three alignment segments

(P (i1, j1, i2, j2, hs, he), A(1, i1, 1, i2,−, hs) and A(j1, n1, j2, n2, he,−))

as a “global” alignment score between two whole sequences,

then computes a “global” cost based on Equation 3.

Note that, only the segment P (i1, j1, i2, j2, hs, he) is from

simultaneous folding and alignment, the folding costs (P̂ (i1, j1)

and P̂ (i2, j2)) and alignment costs (A(1, i1, 1, i2,−, hs)

and A(j1, n1, j2, n2, he,−)) are independent of each other.

LinearSankoff further applies beam search heuristic regarding

“global” costs.

Results

Hyperparameter Selection
The weight on alignment cost (λ) is selected empirically based

on performance on the training dataset. We benchmarked

LinearSankoff with different values of λ from 0 to infinity over

four training families from RNAStralign following TurboFold

II [30]: tRNA, 5S ribosomal RNA, tmRNA and Group I Intron

RNA, and 20 sequence pairs were sampled randomly for each

family.

Fig. 3 shows the secondary structure prediction accuracy (y

axis) against alignment accuracy (x axis) with different values

of λ. When λ is 0, i.e., LinearSankoff barely takes advantage of

alignment information (close to Dynalign), structure prediction

accuracy of LinearSankoff is still higher than single sequence

folding (LinearFold) because LinearSankoff folds two sequences

to generally similar structures even though the alignment is

poor (λ = 0 in Fig. 3). Additionally, when λ is infinite,

LinearSankoff only optimizes alignment and the alignment

accuracy is close to the accuracy of sequence alignment

(LinearAlignment, see λ = ∞ in Fig. 3). In between these
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Fig. 4. Model score against beam size. The orange and blue curves represent LinearSankoff with and without applying A∗ algorithm, respectively.

extreme λ values, as the λ value increases, Fig. 3 illustrates

a trend that both the structure prediction and alignment

accuracies first increase then decrease. We choose λ = 0.3 as the

default value which is the most closest to the top right corner.

Fig. 4 compares the model scores of LinearSankoff with

and without the A⋆ algorithm against the beam size over four

training families. Both methods get higher model scores with

a larger beam size. While LinearSankoff with A⋆ algorithm

leads to have a higher model score than the plain LinearSankoff

with a small beam size, e.g., 50. In addition to the tmRNA

family, as the beam size increase to 500, LinearSankoff with the

A⋆ algorithm still achieves higher model scores than the plain

LinearSankoff, but the difference of model scores gets smaller.

For all the results presented and discussed in the following parts

are from LinearSankoff with the A⋆ algorithm.

Efficiency and Scalability
To compare the runtime usage of LinearSankoff (λ = 0.3

and b = 100) and Dynalign, one practical implementation of

the Sankoff algorithm, we collected a dataset that consists of

sequence pairs from RNAStralign with the average sequence

length ranging from 70 to 3000 nt. We used a Linux machine

(CentOS 7.7.1908) with a 2.30 GHz Intel Xeon E5-2695 v3 CPU

and 755 GB memory, and gcc 4.8.5 for benchmarks.

As we discussed above, Dynalign takes O(n3m3) time,

where m is the average width of alignment searching space,

which correlates with the sequence identity. Dynalign has two

modes to decide the value of m. One is to require users to

specify the value of m, which is fixed along the sequence.

Another mode is to generate a valid alignment searching space

adaptively based on sequence identity. Dynalign first computes

posterior alignment probabilities using the forward-backward

algorithm, then prunes unlikely positions by a threshold, which

is determined by sequence identity. LinearSankoff also has these

two modes.

Fig. 5A uses the second mode, which restricts the alignment

searching space adaptively based on sequence identity, to

show runtime comparison between Dynalign and LinearSankoff.

Dynalign took more than 800 minutes for two pairs of Group I

Intron sequences with sequence length ∼500 nt. The sequence

identity of these two pairs is around 0.35 with m 45 nt. Even

though 16S rRNA sequences (∼1500 nt) are three times longer

than Group I Intron sequences, Dynalign only took one third

of the runtime spent on Group I Intron sequence pairs due to

the high sequence identity (0.85) and a narrow searching space

(m = 4 nt) of the 16S rRNA sequence pairs.

SRP

RNA

RNaseP

RNA

telomerase

RNA

16S

rRNA
overall

sequence length 286 370 455 1140

sequence identity 0.29 0.48 0.83 0.85

m 25.4 18.8 3.4 3.7

Structure Prediction Accuracy (F1 score)

LinearFold [16] 72.1 59.0 54.3 46.1 58.0

Dynalign [4] 72.5 69.2 66.4 56.3 66.2

FoldAlign [7] 61.4 56.8 40.6 53.1 53.2

LocARNA [9] 70.9 60.0 61.7 58.6 63.0

SCARNA [10] 72.7 55.6 44.1 62.0 58.7

LinearTurboFold [31] 69.5 70.4 58.3 54.2 63.3

MAFFT+RNAalifold [32] 31.5 42.0 50.2 57.0 45.3

LinearSankoff (b=100) 75.4 70.4 68.6 60.1 68.6

LinearSankoff (b=∞) 76.3 73.3 67.5 58.8 69.0

Alignment Accuracy (F1 score)

MAFFT [33] 44.4 70.1 93.1 97.3 76.2

Dynalign 43.2 56.6 70.5 90.1 65.1

FoldAlign 51.2 71.0 92.7 97.2 78.0

LocARNA 54.8 70.7 92.3 97.3 78.8

SCARNA 50.2 70.5 93.0 97.4 77.8

LinearTurboFold 50.8 69.0 93.4 97.3 77.6

LinearSankoff (b=100) 50.8 73.0 91.2 96.8 77.9

LinearSankoff (b=∞) 51.2 73.0 91.3 96.7 78.1

Table 2. Structure prediction and alignment accuracies on test set.

Thanks to the beam pruning, although LinearSankoff

performs a more complicated alignment model than Dynalign,

LinearSankoff is significantly faster than Dynalign, especially

for diverse or long sequences. In Fig. 5A, for instance, Dynalign

took ∼13 hours for Group I Intron sequence pairs, which are

the most diverse sequences among sampled data, and ∼3 hours

for 16S rRNA sequence pairs, which are the longest sequences.

While, LinearSankoff only needs 5 minutes for Group I Intron

sequence pairs and 30 seconds for 16S rRNA sequence pairs,

respectively.

Both Dynalign and LinearSankoff’s runtime correlate with

both alignment searching space (m) and sequence length

(n). Therefore, we fixed alignment searching space (Fig. 5B)

and sequence length (Fig. 5C) to show correlation with two

variables. With a fixed m, Dynalign scales cubically with

sequence length, while LinearSankoff takes linear runtime with

sequence length. With fixed sequence length and m varying

from 1 to 20 nt, both Dynalign and LinearSankoff scales almost

quadratically with m.

Folding and Alignment Accuracies
To evaluate LinearSankoff and several benchmarks, we first

randomly sampled 80 sequence pairs from the other four

families of the RNAStralign dataset: SRP RNA, telomerase
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Fig. 5. Runtime comparisons between Dynalign and LinearSankoff (b=100). (A) The runtime of sampled pairs of sequences. Both Dynalign and

LinearSankoff construct the alignment searching space adaptively based on sequence identity. (B) The runtime against sequence length (n) with the

fixed width of alignment searching space (m=10 nt). (C) The runtime against the width of alignment search space (m) with fixed sequence length

(n=1500 nt).

RNA, RNase P RNA and 16S rRNA. The first three rows in

Tab. 2 summarize the basic information of these four families

including the average sequence length, sequence identity, and

the average alignment searching space (m). The benchmarks

consist of LinearFold, MAFFT, Dynalign, FoldAlign,

LocARNA, SCARNA, LinearTurboFold and RNAalifold, which

are selected from several perspectives. LinearFold predicts

structures for a single sequence, and MAFFT performs

alignment only based on nucleotides. Dynalign, FoldAlign,

LocARNA and SCARNA are representative implementations

of the Sankoff algorithm. As a workaround of the Sankoff

algorithm, LinearTurboFold iteratively performs folding and

alignment modules to avoid strictly simultaneous computation.

MAFFT + RNAalifold divides the task of simultaneous folding

and alignment into two consecutive independent tasks: first

aligning sequences then folding the alignment. We ran all the

tools with default settings, only ran SCARNA with “-rfold”

mode.

For secondary structure prediction, LinearSankoff (both

b=100 and ∞) first perform better than single-sequence folding

(LinearFold). LinearSankoff (both b=100 and ∞) achieves

higher accuracy than Sankoff-style methods including Dynalign,

FoldAlign, LocARNA and SCARNA on every test family. With

infinite beam size, LinearSankoff leads to better performance on

the SRP RNA and RNase P RNA families than beam size 100.

These two families have relatively low sequence identity with

large alignment searching space (m) among four test families,

thus need a large beam size.

Regarding alignment accuracy, Dynalign obtains the lowest

accuracy among all benchmarks on all four test families,

which does not include terms for sequence identity. FoldAlign,

SCARNA, LinearTurboFold achieve comparable alignment

accuracy to LinearSankoff (both b=100 and ∞). LinearSankoff

with infinite beam size is the second-best tool in terms

of alignment quality, and its accuracy is only lower than

LocARNA. While, LocARNA performs worse on secondary

structure prediction than Dynalign, LinearTurboFold and

LinearSankoff (both b=100 and ∞).

Domain Insertion
Most of implementations and variations of the Sankoff

algorithm (Dynalign, FoldAlign, LocARNA, SCARNA and

LinearSankoff) fold RNA homologous sequences to generally

A tRNA (4- vs. 5-branches) SRP RNA (2- vs. 3-branches)

PPV sensitivity F1 PPV sensitivity F1

Dynalign 71.4 70.8 71.1 59.3 59.2 59.2

LinearSankoff 87.6 82.6 85.0 43.4 37.1 40.0

Dynalign II 82.7 84.3 83.5 70.4 72.9 71.6

LinearSankoff † 91.6 91.6 91.6 73.7 71.3 72.5

B

inserted  
branch
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Fig. 6. (A) Structure prediction accuracies on families with domain

insertion. Both Dynalign and LinearSankoff are unable to capture the

inserted branch, while Dynalign II and LinearSankoff † have the advanced

domain insertion feature. (B) The ground truth and the predictions of

Dynalign, Dynalign II, LinearSankoff and LinearSankoff † for a sequence

pair (tdbD00005111 and tdbD00001770) from the tRNA family.

similar structures, i.e., a branch in one structure must have a

corresponding branch in the other structure. However, it is not

guaranteed that the one-to-one correspondence always exists.

For instance, some structures contains insertion or deletion

of a whole branch. As the ground truth shown in Fig. 6B,

one structure (on the top of the matrix) contains one more

branch (covered by a red box) than the other structure on

the right side. The yellow curve in the black matrix represents

the alignment between two sequences with a continuous long

insertion corresponds to insertion of a whole branch into the

top structure. Dynalign II [6] extends the Dynalign to model

domain insertion. Following Dynalign II, LinearSankoff † is able

to model inserted branches as well.

To evaluate the modeling ability of LinearSankoff †, we

collected a specific dataset by sampling sequence pairs from

tRNA and SRP RNA families. From the tRNA family, we

sampled sequence pairs, whose structures consist of four



8 Author Name et al.

LinearTurboFold (AH)
SARS-CoV-2 AUGCUUCAGUCAGCUGAUGCACAAU
           .(((.((((....)))).)))....
SARS-CoV-1 UUGAUGCAGUCUGCGGAUGCAUCAA
           .(((((((.((....))))))))).

LinearSankoff (AH)
SARS-CoV-2 AUGC----UUCAGUCAGCUGAU----GCACAAU
           .(((----.((((....)))).----)))....
SARS-CoV-1 UUGAUGCAGUC--UGCG--GA-UGCAUCA---A
           .(((((((.((--....--))-)))))))---..

structure of the programmed frameshifting element using our
lab’s method of chaperone-assisted RNA crystallography.
Ribosomal frameshifting from Orf1a to Orf1b is a critical

step in coronavirus propagation.15,18 Orf1a and its out-of-frame
continuation Orf1b are the first open reading frames to be
translated directly from the SARS-CoV-2 RNA genome upon
infection and disassembly (Figure 1A). They encode the
nonstructural proteins (NSPs) 1−16, which are involved in
evading the host immune response, replicating the genomic
RNA, and producing the subgenomic mRNAs that encode the
structural proteins. NSPs 1−10 are produced from Orf1a as the
self-cleaving polypeptide pp1a.13,16 As the ribosome ap-
proaches the stop codon of Orf1a, the programmed
frameshifting element pseudoknot can cause the ribosome to
slip backward by one position.16−18 If frameshifting occurs the
ribosome will continue translating into Orf1b, producing
pp1ab, which comprises NSPs 1−16. Known as the golden
mean hypothesis of ribosomal frameshifting, incorrect
stoichiometry of early replication products, in this case pp1a
and pp1ab, disrupts the replication cycle and reduces virus
propagation.4,13,19

The basic mechanism of −1 ribosomal frameshifting is
known, although there are many levels of regulation at play
that are not understood.17,20−22,46 Generally, a structured
region of the RNA causes a translating ribosome to pause over
a so-called slippery site with a nucleotide sequence pattern of X
XXY YYZ composition.16,18,23,24 This structured region is most
often a pseudoknot, which forms 6−8 nts downstream of the
slippery site. The pseudoknot structure opposes the trans-
locating ribosome, which creates tension that causes the
slippery site codon interactions with P- and A-site tRNAs to
slide backward by one nucleotide from X XXY YYZ to XXX
YYY Z, resulting in a −1 shift in the reading frame.16,18,23−25

When incorporated into luciferase reporter mRNA con-
structs, the minimal sequence of frameshifting pseudoknots
from different viruses induces frameshifting at an internally
consistent frequency, but this frequency varies widely from
virus to virus.27 For example, the programmed frameshifting
element from West Nile virus induces frameshifting around 70
to 80% of the time, while the SARS-CoV-1 PFSE induces
frameshifting around 15 to 30% of the time.5,27,28 Force
extension curves of the different pseudoknots in an optical trap
reveal that those elements populating more conformations

Figure 1. Overall structure of SARS-CoV-2 programmed −1 ribosomal frameshifting element pseudoknot. (A) Diagram of frameshifting element
relative to SARS-CoV-2 genome. AH indicates the attenuator hairpin, SS indicates the slippery site and PK indicates the pseudoknot structure.6 (B)
Predicted secondary structure of the programmed frameshifting element.6 (C) Secondary structure derived from the crystal structure; Stem 1
colored green, Loop 1 colored cyan, Stem 2 colored navy, Loop 3 colored magenta with nucleotides lacking density colored gray, Stem 3 colored
orange, Loop 2 mutant pentaloop colored black, nucleotide 13542 shown in red was added via nonspecific addition in in vitro transcription
reaction. (D) Crystal structure of the SARS-CoV-2 frameshifting element bound to Fab BL3−6 through its mutated loop structure shown as
cartoon and transparent surface; surface excluded for nucleotides with no electron density in Loop 3. Color scheme of crystal structure matches that
of the secondary structure in (C).
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Fig. 7. The alignment of attenuator hairpins in the frameshifting element (FSE). (A) Canonical structures of attenuator hairpins in SARS-CoV-2

and SARS-CoV-1 frameshifting element. (B) Alignment of attenuator hairpins generated by LinearTurboFold over 25 SARS-CoV-2 and SARS-related

genomes. (C) Alignment of attenuator hairpins generated by LinearSankoff. Clearly, the alignment from LinearSankoff is more accurate than the output

of LinearTurboFold for the attenuator hairpins.

branches and five branches, respectively. For the SRP RNA

family, we sampled sequence pairs from two subfamilies (archael

and long bacterial). Compared to the structure of the archael,

one branch is deleted from a three-branch multiloop in the

structure of the long bacterial. Fig. 6A shows performance of

Dynalign, Dynalign II, LinearSankoff and LinearSankoff † on

two families. Overall, with the help of HMM-based alignment

model, LinearSankoff † achieves higher structure prediction

accuracy than Dynalign II after adding the feature of domain

insertion.

Without the feature to model domain insertion, LinearSankoff

achieves higher accuracy than Dynalign on the tRNA family

due to the powerful HMM-based alignment model. Although

it is out of the scope of LinearSankoff to predict insertion of

a whole branch, the HMM-based alignment model captures

the signal from sequences and LinearSankoff just leaves the

corresponding region unpaired (see red boxes in LinearSankoff

prediction in Fig. 6B). LinearSankoff even obtains higher

accuracy than Dynalign II. We observed that Dynalign II

predicts same structures as Dynalign for some tRNA sequence

pairs (see Dynalign and Dynalign II predictions in Fig. 6B),

which is highly because the default penalty for domain insertion

is relatively large for tRNA sequences (only ∼70 nt). In

other words, the free energy change of adding a new branch

can not make up for the penalty of domain insertion. While

LinearSankoff does not reply on any penalty for domain

insertion, only the probability of the alignment path.

Application to SARS-CoV-2 genomes
We further applied LinearSankoff to the SARS-CoV-2 reference

genome (NC 045512.2) with the SARS-CoV-1 reference genome

(NC 004718). The attenuator hairpin (AH) in the frameshifting

element (FSE) are conserved among SARS-CoV-2 and SARS-

related genomes and its structures are well established as

shown in Fig 7A. However, LinearTurboFold cannot align

these two attenuator hairpins from SARS-CoV-2 and SARS-

CoV-1 correctly due to some extent of disagreement between

folding and alignment (Fig 7B). Thanks to the strong coupling

between folding and alignment in LinearSankoff, Fig 7C

shows LinearSankoff aligns two structures properly, and we

can further extract conserved structures directly based on

LinearSankoff’s prediction without any extra manual work.

Conclusion

We focus on simultaneous folding and alignment of RNA

homologous sequences. Formally, we borrowed synchronous

context free grammars from computational linguistics to

formulate homologous folding of two RNA sequences. We

proposed LinearSankoff, which enhances the modeling capacity

of the Sankoff algorithm by integrating it with an HMM-

based alignment model. We devised a dynamic programming

algorithm tailored to this combined Sankoff+HMM model.

In addition, LinearSankoff generalizes beam search heuristic

from single-sequence folding to parsing two sequences

simultaneously, which make its runtime scale linearly with

sequence length. LinearSankoff further applies A⋆ algorithm to

conduct more efficient searching together with beam pruning.

Based on evaluation on four test families and comparison with

a variety of benchmarks, LinearSankoff achieves significantly

better secondary structure accuracy than other benchmarks,

and comparable alignment accuracy to most of the Sankoff-

style tools. LinearSankoff is also the first joint folding

and alignment algorithm to scale to full-length SARS-CoV-2

genomes, and outperforms other tools in identifying crucial

conserved structures between SARS-CoV-2 and SARS-CoV-1.

LinearSankoff is in principle extendable to multiple

sequences. with several solutions. One option is to replace

Dynalign with LinearSankoff in Multilign [34], which

progressively constructs a conserved structure to multiple

sequences by conducting pairwise alignment using Dynalign.

Another option is to generalize LinearSankoff to take not only

single sequences but also multiple sequence alignments (MSA)

as input, i.e., simultaneously folding and alignment of MSAs.

With such generalizations, LinearSankoff can progressively

build the MSA along a phylogenetic tree. We leave these

endeavors to future work.
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